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Efficient, Wide Band, Integrated Lightwave
Devices Transmitters for RF-Transmissions

OBJECTIVES:

1. To build an integrated FM-Laser/discriminator unit as an efficient RF-
photonic transmitter.

2. To build a novel low V-πelectro-optic modulator based on the photonic 
crystal structure.

APPROACHES:

STARTING DATES: July 1, 2000. DURATION: 4 years

1. Using the FM gain of the system to compensate the loss and obtain RF 
insertion gain.

2. Using the photonic crystal structure to obtain slow optical waves and match 
with the velocity of the RF signal.   
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Analog fiber links vs. microwave links :

Advantages:
• Larger transmission bandwidth
• Immunity to EM interference 
• Smaller size as well as weight
Disadvantages:
• larger insertion loss (~ 20 dB) due to the inefficient 
conversion of RF signals to amplitude-modulated optical 
signals. 
Solutions: 
• High power transmitters and high saturation power detectors 
• Low V-πmodulators 

Motivation
APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



Aug. 16, 2000 R-FLICS Kickoff 4

Direct and External Modulations

Direct Modulation: Link Gain ∝∝∝∝ SL
2 SD

2 (S: slop efficiency)

Example: Fujitsu DFB: 12 mW fiber pigtailed, slop efficiency: 
0.339 W/A, BW=3GHz, RIN: -170 dB/Hz, <10 dB RF link Loss, 
with 128 dB-Hz2/3 SFDR 

External Modulation: Link Gain =Popt
2 [(ππππ2 tff

2 Rin)/(Vππππ
2)] Lf

2

[Rd
2Rout] (tff: modulator optical insertion loss, Rin:modulator 

drive impedance, Lf: optical loss in the fiber, Rd: photodiode 
responsivity, Rout detector load impedance)

Example: tff=0.1, Rd=1A/W, Lf=1, 

Vπ= 1V -> RF gain = -17 dB (10 mW), -7 dB (30 mW); 

Vπ= 0.5V -> RF gain = -11 dB (10 mW), -2 dB (30 mW); 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



Aug. 16, 2000 R-FLICS Kickoff 5

A New Solution

• A new type of lightwave transmitter based on the frequency   
modulation techniques 
• Provides >10 dB RF insertion gain (Obtained from the “FM 
Gain” of the system
• Operated at < 0 dBm optical power (No need for high power 
to reduce RF loss)
• High spur-free dynamic range (DRsp) 
• Low noise
• Operating frequency ranges < 10 GHz at this moment. Can be 
extended to 20 GHz or higher frequencies depending on 
modulator speeds and linearity limited by Carson’s rule.
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Principles
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Link Gain

fc fc+B/2

a2

a1

fc-B/2

Optical filter transfer 
function

Where, 
R is the responsivity of the 
photodiode, 
P is the transmitter power, 
L is the insertion loss, 
K is the FM efficiency (Hz/A) of the 
FM laser, 
B is the usable bandwidth of the 
optical filter, B≥ 2(β+1)fm
a2 and a1 are transfer coefficient at
fc+B/2 and fc-B/2

The RF Gain, G= (RPLK(a2-a1)/B)2
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FM Lasers I (Conventional)
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Gain-lever effect

• All these structures can only achieve about 1GHz/mA FM efficiency 
in about 1GHz flat region
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Gain Levering Effects

K. Lau, PTL Aug. 1991
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FM Lasers II (Example)

Typical FM response for DFB Laser
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Lasers: 

Using the gain levering 
effect -

The FM efficiency can be 
increased (still < 2 
GHz/mA). However, the 
The FM BW is small and 
the response is not quite 
flat. 
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High Efficiency FM Lasers

EA Mod.

DFB
Phase 
Section

RF In DC 
current

Light out

The reflectivity from the 
facet of the EA modulator 
contributes to the phase 
change of the laser and 
generates a highly 
efficient FM

Reference:
X.Huang, A.J.Seeds, et al, “Monolithically integrated 
Quantum-confined Stark effect tuned laser with uniform 
frequency modulation response”, Photon. Technol. Lett., v. 
10, pp. 1697-1699 (1998).
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Measurement set up for both AM and 
FM modulations 
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Modulation Characteristics
Modulator Response 
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FM Response

0

5

10

15

0 1 2 3 4 5 6 7 8 9

RF frequency (GHz)

FM
 ef

fic
ien

cy
 (G

Hz
/m

A)

0

200

400

600

800

1000

0 100 200 300 400 500
Input RF Amplitude (mV)

Ou
tpu

t R
F A

mp
litu

de
(m

V)

2GHz
3GHz
5GHz

FM efficiency vs. frequency FM efficiency vs. RF amplitude

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



Aug. 16, 2000 R-FLICS Kickoff 15

SFDR measurement setup
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f1=2GHz and f2=2.5GHz (500 MHz apart 
for measurements at other frequencies)
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FM-AM Conversion

We used the edge of a 
narrow band tunable 
optical filter to perform 
the FM-AM conversion

the linear region is around 
20GHz
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SFDR at 2 GHz
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Note: 

1. The RF gain is positive 
and large (more than 
10dB gain, whereas 
optical power at detector 
is only -2.3dBm), 

2. The slope of the signal 
line is not unity because 
RF gain varies with 
input powerinter-modulation distortion (IMD)-

3rd order (2f1-f2, 2f2-f1)
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SFDR at other frequencies
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More than 90dB SFDR can 
be achieved up to 5GHz, 
where the AM response starts 
to drop. The nonlinearity of 
the system is reasonable. 
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Planed Integration
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Novel Electro-Optic Modulator

• It is necessary to match 
velocities of RF and light

• In LiNbO3 vopt ~2.2vRF 
• Velocities are normally 

matched by using thick 
electrodes and spacer with 
lower ε - this way RF 
propagates partially in the 
air.
– Overlap with light mode is 

small
– Difficult to obtain 50Ω

impedance.

light
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RF field

RF field

Ti-diffused guide

Ti-diffused guide
electrodes

thick electrodes
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What is proposed.

• We propose to slow down the 
optical wave instead of 
accelerating the RF wave 
using Bragg grating

• Advantages:
– no need for spacer or thick 

electrodes = larger overlap 
between RF and light waves

– longer interaction time = larger 
effective length

– easy to design 50Ω impedance.

RF

light
Bragg Grating

The group velocity 
dispersion is too high -
use cascaded Bragg gratings.

RF

light
Cascaded Bragg Grating

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED



Aug. 16, 2000 R-FLICS Kickoff 22

Proposed Design

• Design wavelength: 
1.55 µm

• Bragg grating periods 
are .35 and 0.36 µm

• Segment length 1mm
• Total length 2cm
• Number of segments 

20
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Matching the group index of light and RF index

• The second order 
GVD is cancelled -
only the third order 
term survives

• The width of 
useful range 
depends on the 
depth of index 
modulation - 1% 
here.

Photonic Gap 1 Photonic Gap 2

Useful range
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Results of the modeling

• Expected 
Vπ~1V

• Impedance 
50Ω

• Bandwidth 
~75GHz

Cascaded grating

No grating
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Advantages of the proposed scheme

• The effective interaction time is increased by a 
factor of ~2.2 - equivalent to the reduction of Vπ
by the same amount

• The overlap between the RF field and optical 
mode can be large - Vπ is reduced by another 
factor of ~1.4-1.6

• Two matching tasks are decoupled: -velocities are 
matched by proper design of the grating and 
impedance matching is accomplished 
independently by the electrodes design.
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Planned course of work:

• Design and fabricate test Bragg structures without 
electrodes

• Measure the light group velocity
• Design electrodes
• Test the modulators
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